

Corrosion Prediction Software and Corrosion Modeling Software

VPC-Compass®: Prediction and Modeling of Vapor Phase Corrosion in Closed Systems

A High Value Software Solution to Costly Corrosion

Version 9.20

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support

Overview and Application Examples of VPC-Compass

VPC-Compass is the only device and OS independent software tool on the market for the prediction and modeling of vapor phase corrosion in closed systems such as storage tanks, pipelines, process vessels, and other industrial facilities. Designers, OEM engineers, consultants, operation personnel, maintenance and inspection engineers can quickly determine the corrosion rate of steel and the risk rankings of internal corrosion in the vapor phase of a closed system, anytime, anywhere, on any device running any OS without the need to install or download anything. VPC-Compass also predicts the relative humidity in the closed system, the partial pressure of water vapor, the saturated water vapor pressure, the dew point of water vapor, the thickness of moisture film on the internal surface, the surface conductivity of the moisture film, and the maximum metal loss over the lifetime of the closed system.

Figures below show the screen shots of VPC-Compass.

VPC-Compass®: Vapor Phase Corrosion in Closed Systems - Prediction, Modeling and Assessment

Internal vapor pressure	kPa 24,659.000		Predicted corrosion risk category No corrosion risk			
850 850		24,055.000				
Internal vapor temperature	°C	40.00	Predicted relative humidity	%	0.333	
Internal metal surface temperature	°C	40.00	Partial pressure of H ₂ O vapor	kPa	0.0246	
nternal surface area to volume ratio	m²/m³	10.000	Saturation pressure of H₂O vapor	kPa	7.382	
H ₂ O content in vapor	g/m³	0.170	Dew point temperature of H₂O	°C	-43.55	
O ₂ content in vapor	g/m³	5.000	Predicted thickness of H2O film	nm	0	
CO ₂ content in vapor	g/m³	0.010	Conductivity of H ₂ O film	$\Omega^{\text{-1}}.\text{cm}^{\text{-1}}$	No H2	
SO ₂ content in vapor	g/m³	0.010	Maximum metal loss over lifetime	μm	0.000	
H₂S content in vapor	g/m³	0.010	Comments:			
HCl in vapor	g/m³	0.010	Under the current condition, there is no electrolyte (liquid water			
HF in vapor	g/m³	0.010	initiate corrosion in the vapor phase.			
HBr in vapor	g/m³	0.010				
3. W M.	The second	1	A STATE OF THE STA	子为公	200	
The state of the s	all a	1		-		
			initiate corrosion in the va	por phase.		

VPC-Compass Version 9.20 © 1995 ~ 2020 WebCorr Corrosion Consulting Services, Singapore

Figure 1 VPC-Compass predicts the risk of internal corrosion in the vapor phase (no corrosion risk).

Under the prevailing conditions shown in Figure 1 above, there is no risk of internal corrosion in the vapor phase as there is no electrolyte (liquid water) to support the corrosion process in the vapor phase. There is no moisture film on the internal surface and the surface is non-conductive..

Under the prevailing operating condition in Figure 2, VPC-Compass predicts that there is a medium risk of internal corrosion in the vapor phase as there exists sufficient electrolyte (liquid water) to sustain a moderate corrosion rate in the vapor phase. The predicted moisture film thickness is 11 nm and the surface conductivity is $5.924 \times 10^{-9} \, \Omega^{-1}$. The maximum metal loss over the lifetime of the closed system is $0.223 \, \mu m$. The expected corrosion rate of steel is about $0.1 \, mm/y$.

VPC-Compass®: Vapor Phase Corrosion in Closed Systems - Prediction, Modeling and Assessment

24,659.000 25.00 25.00 10.000 17.000 5.000	Predicted corrosion risk category Predicted relative humidity Partial pressure of H ₂ O vapor Saturation pressure of H ₂ O vapor Dew point temperature of H ₂ O	% kPa kPa	73.891 2.3413 3.1685	
25.00 10.000 17.000	Partial pressure of H ₂ O vapor Saturation pressure of H ₂ O vapor	kPa kPa	2.3413	
10.000 17.000	Saturation pressure of H₂O vapor	kPa		
17.000	1		3.1685	
1011010101	Dew point temperature of H₂O	122		
5.000		°C	17.35	
0.000	Predicted thickness of H2O film	nm	11	
0.010	Conductivity of H₂O film	$\Omega^{-1}.cm^{-1}$	5.924e-9	
0.010	Maximum metal loss over lifetime	μm	0.223	
0.010	Comments:			
0.010	Under the current condition, there exists sufficient electrolyte to sustain moderate corrosion rate in the vapor phase. Expected corrorate of steel is about 0.10 mm/y.			
0.010				
0.010				
	0.010 0.010 0.010 0.010	0.010 Maximum metal loss over lifetime 0.010 Comments: Under the current condition, there exists sustain moderate corrosion rate in the vapor rate of steel is about 0.1	0.010 Maximum metal loss over lifetime Comments: Under the current condition, there exists sufficient elessustain moderate corrosion rate in the vapor phase. Experiment of steel is about 0.10 mm/y.	

VPC-Compass Version 9.20 © 1995 ~ 2020 WebCorr Corrosion Consulting Services, Singapore

Figure 2 VPC-Compass predicts the risk of internal corrosion in the vapor phase (medium corrosion risk).

Under the prevailing operating condition shown in Figure 3, there is a very high risk of internal corrosion in the vapor phase.

VPC-Compass®: Vapor Phase Corrosion in Closed Systems - Prediction, Modeling and Assessment

Very high corrosion risk	
100.000	
6.8860	
3.1685	
36.60	
3,751	
> 4.0E-8	
1.022	
ctrolyte to	
ed corrosi	

VPC-Compass Version 9.20 $\,$ © 1995 $\,$ 2020 WebCorr Corrosion Consulting Services, Singapore

Figure 3 VPC-Compass predicts the risk of internal corrosion in the vapor phase (very high corrosion risk).

The powerful applications of VPC-Compass are truly unlimited in engineering design, internal corrosion prediction and risk assessment, materials selection, trouble-shooting process-related issues and failure analysis of components and systems. A special edition of VPC-Compass for the microelectronics and semiconductor industry is also available.

Click here to contact us for licensing details and experience the power of VPC-Compass.